发表文章

[最新] python并发编程之多进程、多线程、异步和协程详解

qq34802511 2月前 1

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。
一、多线程

多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果。

多线程相当于一个并发(concunrrency)系统。并发系统一般同时执行多个任务。如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完,另一个指令,多个窗口同时卖票,可能出现卖出不存在的票。

在并发情况下,指令执行的先后顺序由内核决定。同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清除哪一个会先执行。因此要考虑多线程同步的问题。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。

1、thread模块

2、threading模块
threading.Thread 创建一个线程。

给判断是否有余票和卖票,加上互斥锁,这样就不会造成一个线程刚判断没有余票,而另外一个线程就执行卖票操作。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#! /usr/bin/python

#-* coding: utf-8 -*

# __author__ ="tyomcat"

import threading

import time

import os

 

def booth(tid):

  global i

  global lock

  while True:

    lock.acquire()

    if i!=0:

      i=i-1

      print "窗口:",tid,",剩余票数:",i

      time.sleep(1)

    else:

      print "Thread_id",tid,"No more tickets"

      os._exit(0)

    lock.release()

    time.sleep(1)

 

i = 100

lock=threading.Lock()

 

for k in range(10):

 

  new_thread = threading.Thread(target=booth,args=(k,))

  new_thread.start()

二、协程(又称微线程,纤程)

协程,与线程的抢占式调度不同,它是协作式调度。协程也是单线程,但是它能让原来要使用异步+回调方式写的非人类代码,可以用看似同步的方式写出来。

1、协程在python中可以由生成器(generator)来实现。

首先要对生成器和yield有一个扎实的理解.

调用一个普通的python函数,一般是从函数的第一行代码开始执行,结束于return语句、异常或者函数执行(也可以认为是隐式地返回了None)。

一旦函数将控制权交还给调用者,就意味着全部结束。而有时可以创建能产生一个序列的函数,来“保存自己的工作”,这就是生成器(使用了yield关键字的函数)。

能够“产生一个序列”是因为函数并没有像通常意义那样返回。return隐含的意思是函数正将执行代码的控制权返回给函数被调用的地方。而"yield"的隐含意思是控制权的转移是临时和自愿的,我们的函数将来还会收回控制权。

看一下生产者/消费者的例子:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#! /usr/bin/python

#-* coding: utf-8 -*

# __author__ ="tyomcat"

import time

import sys

# 生产者

def produce(l):

  i=0

  while 1:

    if i < 10:

      l.append(i)

      yield i

      i=i+1

      time.sleep(1)

    else:

      return  

# 消费者

def consume(l):

  p = produce(l)

  while 1:

    try:

      p.next()

      while len(l) > 0:

        print l.pop()

    except StopIteration:

      sys.exit(0)

if __name__ == "__main__":

  l = []

  consume(l)

当程序执行到produce的yield i时,返回了一个generator并暂停执行,当我们在custom中调用p.next(),程序又返回到produce的yield i 继续执行,这样 l 中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

2、Stackless Python

3、greenlet模块

基于greenlet的实现则性能仅次于Stackless Python,大致比Stackless Python慢一倍,比其他方案快接近一个数量级。其实greenlet不是一种真正的并发机制,而是在同一线程内,在不同函数的执行代码块之间切换,实施“你运行一会、我运行一会”,并且在进行切换时必须指定何时切换以及切换到哪。

4、eventlet模块

三、多进程
1、子进程(subprocess包)

在python中,通过subprocess包,fork一个子进程,并运行外部程序。

调用系统的命令的时候,最先考虑的os模块。用os.system()和os.popen()来进行操作。但是这两个命令过于简单,不能完成一些复杂的操作,如给运行的命令提供输入或者读取命令的输出,判断该命令的运行状态,管理多个命令的并行等等。这时subprocess中的Popen命令就能有效的完成我们需要的操作

?

1

2

3

4

5

>>>import subprocess

>>>command_line=raw_input()

ping -c 10 www.baidu.com

>>>args=shlex.split(command_line)

>>>p=subprocess.Popen(args)

利用subprocess.PIPE将多个子进程的输入和输出连接在一起,构成管道(pipe):

?

1

2

3

4

5

import subprocess

child1 = subprocess.Popen(["ls","-l"], stdout=subprocess.PIPE)

child2 = subprocess.Popen(["wc"], stdin=child1.stdout,stdout=subprocess.PIPE)

out = child2.communicate()

print(out)

communicate() 方法从stdout和stderr中读出数据,并输入到stdin中。

2、多进程(multiprocessing包)

(1)、multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。

进程池 (Process Pool)可以创建多个进程。

apply_async(func,args)  从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。

close()  进程池不再创建新的进程

join()   wait进程池中的全部进程。必须对Pool先调用close()方法才能join。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#! /usr/bin/env python

# -*- coding:utf-8  -*-

# __author__ == "tyomcat"

# "我的电脑有4个cpu"

 

from multiprocessing import Pool

import os, time

 

def long_time_task(name):

  print 'Run task %s (%s)...' % (name, os.getpid())

  start = time.time()

  time.sleep(3)

  end = time.time()

  print 'Task %s runs %0.2f seconds.' % (name, (end - start))

 

if __name__=='__main__':

  print 'Parent process %s.' % os.getpid()

  p = Pool()

  for i in range(4):

    p.apply_async(long_time_task, args=(i,))

  print 'Waiting for all subprocesses done...'

  p.close()

  p.join()

  print 'All subprocesses done.'

(2)、多进程共享资源

通过共享内存和Manager对象:用一个进程作为服务器,建立Manager来真正存放资源。

其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#! /usr/bin/env python

# -*- coding:utf-8  -*-

# __author__ == "tyomcat"

 

from multiprocessing import Queue,Pool

import multiprocessing,time,random

 

def write(q):

 

  for value in ['A','B','C','D']:

    print "Put %s to Queue!" % value

    q.put(value)

    time.sleep(random.random())

 

 

def read(q,lock):

  while True:

    lock.acquire()

    if not q.empty():

      value=q.get(True)

      print "Get %s from Queue" % value

      time.sleep(random.random())

    else:

      break

    lock.release()

 

if __name__ == "__main__":

  manager=multiprocessing.Manager()

  q=manager.Queue()

  p=Pool()

  lock=manager.Lock()

  pw=p.apply_async(write,args=(q,))

  pr=p.apply_async(read,args=(q,lock))

  p.close()

  p.join()

  print

  print "所有数据都写入并且读完"

四、异步

无论是线程还是进程,使用的都是同步进制,当发生阻塞时,性能会大幅度降低,无法充分利用CPU潜力,浪费硬件投资,更重要造成软件模块的铁板化,紧耦合,无法切割,不利于日后扩展和变化。

不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。多个线程之间在一些访问互斥的代码时还需要加上锁,

现下流行的异步server都是基于事件驱动的(如nginx)。

异步事件驱动模型中,把会导致阻塞的操作转化为一个异步操作,主线程负责发起这个异步操作,并处理这个异步操作的结果。由于所有阻塞的操作都转化为异步操作,理论上主线程的大部分时间都是在处理实际的计算任务,少了多线程的调度时间,所以这种模型的性能通常会比较好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关推荐
最新评论 (0)
返回
发表文章
qq34802511
文章数
182
评论数
0
注册排名
802282